## Interest Rates

Many of our formulas incorporate an interest rate $r$. For example, if we want to calculate the present value of $C$ dollars received in period $T$ with interest rate $r$ :

$$
P V_{0}=\frac{C_{T}}{(1+r)^{T}}
$$

However, we need to think carefully about which $r$ to use. How we count time (how we define a period) must match with our choice of $r$.

## Definitions (using my preferred notation)

$r_{A P R, m}$ : Stated annual interest rate (or annual percentage rate)

- The stated rate is always associated with a compounding frequency, $m$
- $m=\#$ of compounding periods per year
- I put $m$ in the subscript so I don't forget to keep track of the compounding frequency
$\frac{r_{A P R, m}}{m}$ : Effective per-period rate
- The stated rate is a complicated way of saying the bank pays $\frac{r_{A P R, m}}{m}$ every period $m$ times per year
$r_{E A R}$ : Effective annual rate (or annual percentage yield)
- The effective rate is the interest rate compounding once per year that is equivalent to $r_{A P R, m}$


## Converting between different interest rates

Suppose a bank pays a stated rate compounded quarterly, $r_{A P R, 4}$. Think about investing $\$ 1$ for one year. The end balance is:

$$
\$ 1(\underbrace{1+\frac{r_{A P R, 4}}{4}}_{\text {1st quarter }})(\underbrace{1+\frac{r_{A P R, 4}}{4}}_{\text {2nd quarter }})(\underbrace{1+\frac{r_{A P R, 4}}{4}}_{\text {3rd quarter }})(\underbrace{1+\frac{r_{A P R, 4}}{4}}_{\text {4th quarter }})=\left(1+r_{E A R}\right)
$$

where the $r_{E A R}$ is the interest rate compounded once that results in the same end value.

We can convert between a stated rate (compounded $m$ times per year) and the effective annual rate using:

$$
\left(1+\frac{r_{A P R, m}}{m}\right)^{m}=\left(1+r_{E A R}\right)
$$

Suppose that we want to convert between a stated rate compounded $m$ times per year, and a stated rate compounded $k$ times per year (e.g., between a stated daily and a stated monthly rate). We can use:

$$
\left(1+\frac{r_{A P R, m}}{m}\right)^{m}=\left(1+\frac{r_{A P R, k}}{k}\right)^{k}
$$

because both sides are equal to $\left(1+r_{E A R}\right)$.
Finally, for continuous compounding, we can write this as $m=\infty$, and use:

$$
\left(1+r_{E A R}\right)=e^{r_{A P R, \infty}}
$$

In summary, we can convert between interest rates using any combination of these four pieces:

$$
\left(1+r_{E A R}\right)=\left(1+\frac{r_{A P R, m}}{m}\right)^{m}=\left(1+\frac{r_{A P R, k}}{k}\right)^{k}=e^{r_{A P R, \infty}}
$$

where $m$ and $k$ are the number of compounding periods per year.

## Which $r$ to use?

How we define a period must match with our choice of $r$.

- If we choose period $=$ year, we want to use $r=r_{E A R}$
- If we choose period $=$ quarter, we want to use use $r=\frac{r_{A P R, 4}}{4}$
- If we choose period $=$ month, we want to use $\frac{r_{A P R, 12}}{12}$
- ... etc.


## Example: MT1 Winter 2016 \#2

Joanna will receive a single payment of $\$ 10,0007.5$ years from today. You find out that her stated annual discount rate is $4.8 \%$, compounded 24 times per year. What is the present value of this payment?
$C_{T}=10000$
$r_{A P R, 24}=4.8 \%$
There are two ways to solve this problem:
Method 1) period $=\frac{1}{2}$ month
$T=7.5 \cdot 24=180 \quad$ (counting time in half months)
Want $r=\frac{r_{A P R, 24}}{24}=\frac{0.048}{24}=0.002 \quad$ (the interest that accumulates in half a month)

$$
P V_{0}=\frac{C_{T}}{(1+r)^{T}}=\frac{C_{180}}{(1+0.002)^{180}}=\frac{10000}{1.002^{180}}=6979.27
$$

Method 2) period $=1$ year
$T=7.5$
Want $r=r_{E A R} \quad$ (the interest that accumulates in one year)

$$
\begin{aligned}
\left(1+r_{E A R}\right) & =\left(1+\frac{r_{A P R, m}}{m}\right)^{m} \\
& =\left(1+\frac{0.048}{24}\right)^{24} \\
& =1.002^{24} \\
& =1.0491 \\
P V_{0}=\frac{C_{T}}{(1+r)^{T}} & =\frac{10000}{1.04917 .5}=6979.27
\end{aligned}
$$

This example is used to illustrate how the way periods are defined must match with our choice of $r$. In problems like this one, it doesn't matter what period we choose so long as we have an $r$ that matches.

However, for perpetuities and annuities, we do not have a choice of how to define periods. The perpetuity and annuity formulas use the time in between payments as the period. As a result, we will need to find the $r$ that matches (if it is not provided in the question).

